図解入門よくわかる 最新火力発電の基本と仕組み 正誤表

頁	セクション	箇所	誤	E
15	1-3 火力発電 の歴史		50Hz地区 69Hz地区 50Hz·60Hz混在地区	50Hz地区 6 <mark>0H</mark> z地区 50Hz·60Hz混在地区
80	4-11 燃料 ク	図1図2	図 2:石油タンク	B1:LNGタンク構造図 (地上式・PC式) (3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
86	4-14 非常用電 源設備	リード文	2001年3月の福島第1原子力発電所の事故	2011年3月の福島第1原子力発電所の事故
124	6-4 ガスター ビンの保 守管理	本文	ディーゼルエンジン自体は、電気事業法によって規定される定期点検の対象ではありませんが、電気工作物として点検の対象となるので、①日常点検、②定期点検(保安規定に基づくもの)、③定期点検(法律に基づく自主点検)、④安全管理審査が必要となります。ディーゼルエンジンのメンテナンスに関する事項は、上記のように法律による規定がありませんので、メーカーとの協議によって決定しますが、日常点検は、機器の状態を目視点検するものと、計器記録を集積で行うものがあります。正常な状態を認識しておかなければ、異常も発見できませんので、おろそかにすることはできません。最近は、オンラインでメーカーと計器記録を共有し、早期の異常の発見を行う例もあります。	ガスタービンの保守管理は、他の原動機と同じく、①日常運転管理、②定期点検(自主点検)、 ③定期点検(法定自主点検)、④定期点検(安全管理審査)があります。法定定期点検は、電気 事業法、大気汚染防止法、労働安全衛生法、消防法関連で点検、定期的な報告が必要となって います。 日常点検は、機器の状態を目視点検するものと、計器記録を集積で行うものがあります。正常 な状態を認識しておかなければ、異常も発見できませんので、おろそかにすることはできませ ん。最近は、オンラインでメーカーと計器記録を共有し、早期の異常の発見を行う例もあります。

図解入門よくわかる 最新火力発電の基本と仕組み 正誤表

136	7-2 電力需要がに 変化にする効 率運用	本文	理用工、週末は電力需要が少ないことから、ユニットを週末に停止し、週明17の電力需要増加に対応するため起動する場合で、停止時間は約12~36時間程度です。なお、昼夜間の電力需要格差に対応するため、深夜停止し、翌朝起動する場合で停止時間は \$16~9時間程度です。	対応 9 るにの起動 9 る場合で、停止時間は約12~30時間程度で 9。 (3) 深夜停止起動 (DSS: Daily Start and Stop) 昼夜間の電力需要格差に対応するため、深夜停止し、翌朝起動する場合で停止時間は約6~8 時間程度です。
	8-6 地震対策	本文	⑤耐震設計法の設定。地域別の補正を考慮(図1参照)	⑤耐震設計法の設定。地域別の補正を考慮(図2参照)
	11-2 日本の火 力発電所	図2	図2:石炭火力発電所	図3:ガス火力発電所

<本書サポートサイト>

http://www.shuwasystem.co.jp/support/7980html/3062.html

<秀和システム> http://www.shuwasystem.co.jp/